Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor
نویسندگان
چکیده
The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the Cterminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2 .radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PLOS ONE | DOI:10.1371/journal.pone.0131567 July 9, 2015 1 / 29 OPEN ACCESS Citation: Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor. PLoS ONE 10(7): e0131567. doi:10.1371/journal.pone.0131567 Editor: Prabodh Kumar Trivedi, CSIR-National Botanical Research Institute, INDIA Received: January 6, 2015 Accepted: June 3, 2015 Published: July 9, 2015 Copyright: © 2015 Tiwari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are within the paper and its Supporting Information files. Funding: This study was supported by the Council of Scientific and Industrial Research (CSIR, www.csir. res.in), Government of India, New Delhi (BSC0109– SIMPLE; BSC0117–PMSI, Senior Research Fellowship to AKC and VT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
منابع مشابه
Correction: Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor
to correct an error in the title introduced during the typesetting process. The publisher apologizes for the error. Please download this article again to view the correct version. The originally published, uncorrected article and the repub-lished, corrected article are provided here for reference. open access article distributed under the terms of the Creative Commons Attribution License, which...
متن کاملA Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants
Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated ...
متن کاملA SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K+/Na+ Ratio, and Antioxidant Machinery
About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is in...
متن کاملMolecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance
Abiotic stresses like drought, salinity and extreme temperature significantly affect crop productivity. Plants respond at molecular, cellular and physiological levels for management of stress tolerance. Functional and regulatory genes play a major role in controlling these abiotic stresses through an intricate network of transcriptional machinery. Transcription factors are potential tools for m...
متن کاملOverexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco
An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tab...
متن کامل